Linux多线程开发

内容有:线程概述、创建线程、线程退出、回收子线程资源、线程分离、线程取消、设置线程属性、线程同步、互斥锁、死锁、读写锁、条件变量、生产者消费者模型、信号量。


1 线程概述

与进程(process)类似,线程(thread)是允许应用程序并发执行多个任务的一种机 制。一个进程可以包含多个线程。同一个程序中的所有线程均会独立执行相同程序,且共 享同一份全局内存区域,其中包括初始化数据段、未初始化数据段,以及堆内存段。(传 统意义上的 UNIX 进程只是多线程程序的一个特例,该进程只包含一个线程)

进程是 CPU 分配资源的最小单位,线程是操作系统调度执行的最小单位。线程是轻量级的进程(LWP:Light Weight Process),在 Linux 环境下线程的本 质仍是进程。

查看指定进程的 LWP 号:ps –Lf pid

1.1 进程和线程的区别

进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用 一些进程间通信方式,在进程间进行信息交换。

调用 fork() 来创建进程的代价相对较高,即便利用写时复制技术,仍然需要复制诸如 内存页表和文件描述符表之类的多种进程属性,这意味着 fork() 调用在时间上的开销 依然不菲。

线程之间能够方便、快速地共享信息。只需将数据复制到共享(全局或堆)变量中即可。

创建线程比创建进程通常要快 10 倍甚至更多。线程间是共享虚拟地址空间的,无需采 用写时复制来复制内存,也无需复制页表。

1.2 线程之间共享的资源

1.3 NPTL

当 Linux 最初开发时,在内核中并不能真正支持线程。但是它的确可以通过 clone() 系统调用将进程作为可调度的实体。这个调用创建了调用进程(calling process)的 一个拷贝,这个拷贝与调用进程共享相同的地址空间。LinuxThreads 项目使用这个调用 来完成在用户空间模拟对线程的支持。不幸的是,这种方法有一些缺点,尤其是在信号处 理、调度和进程间同步等方面都存在问题。另外,这个线程模型也不符合 POSIX 的要求。

要改进 LinuxThreads,需要内核的支持,并且重写线程库。有两个相互竞争的项目开始 来满足这些要求。一个包括 IBM 的开发人员的团队开展了 NGPT(Next-Generation POSIX Threads)项目。同时,Red Hat 的一些开发人员开展了 NPTL 项目。NGPT 在 2003 年中期被放弃了,把这个领域完全留给了 NPTL。

NPTL,或称为 Native POSIX Thread Library,是 Linux 线程的一个新实现,它 克服了 LinuxThreads 的缺点,同时也符合 POSIX 的需求。与 LinuxThreads 相 比,它在性能和稳定性方面都提供了重大的改进。

查看当前 pthread 库版本:getconf GNU_LIBPTHREAD_VERSION。

1.4 线程操作函数

1.5 创建线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/*
一般情况下,main函数所在的线程我们称之为主线程(main线程),其余创建的线程
称之为子线程。
程序中默认只有一个进程,fork()函数调用,2进行
程序中默认只有一个线程,pthread_create()函数调用,2个线程。

#include <pthread.h>
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

- 功能:创建一个子线程
- 参数:
- thread:传出参数,线程创建成功后,子线程的线程ID被写到该变量中。
- attr : 设置线程的属性,一般使用默认值,NULL
- start_routine : 函数指针,这个函数是子线程需要处理的逻辑代码
- arg : 给第三个参数使用,传参
- 返回值:
成功:0
失败:返回错误号。这个错误号和之前errno不太一样。
获取错误号的信息: char * strerror(int errnum);

*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
printf("child thread...\n");
printf("arg value: %d\n", *(int *)arg);
return NULL;
}

int main() {

pthread_t tid;

int num = 10;

// 创建一个子线程
int ret = pthread_create(&tid, NULL, callback, (void *)&num);

if(ret != 0) {
char * errstr = strerror(ret);
printf("error : %s\n", errstr);
}

for(int i = 0; i < 5; i++) {
printf("%d\n", i);
}

sleep(1);

return 0; // exit(0);
}

1.6 终止线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/*

#include <pthread.h>
void pthread_exit(void *retval);
功能:终止一个线程,在哪个线程中调用,就表示终止哪个线程
参数:
retval:需要传递一个指针,作为一个返回值,可以在pthread_join()中获取到。

pthread_t pthread_self(void);
功能:获取当前的线程的线程ID

int pthread_equal(pthread_t t1, pthread_t t2);
功能:比较两个线程ID是否相等
不同的操作系统,pthread_t类型的实现不一样,有的是无符号的长整型,有的
是使用结构体去实现的。
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>

void * callback(void * arg) {
printf("child thread id : %ld\n", pthread_self());
return NULL; // pthread_exit(NULL);
}

int main() {

// 创建一个子线程
pthread_t tid;
int ret = pthread_create(&tid, NULL, callback, NULL);

if(ret != 0) {
char * errstr = strerror(ret);
printf("error : %s\n", errstr);
}

// 主线程
for(int i = 0; i < 5; i++) {
printf("%d\n", i);
}

printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

// 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
pthread_exit(NULL);

printf("main thread exit\n");

return 0; // exit(0);
}

1.7 回收已终止的线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
#include <pthread.h>
int pthread_join(pthread_t thread, void **retval);
- 功能:和一个已经终止的线程进行连接
回收子线程的资源
这个函数是阻塞函数,调用一次只能回收一个子线程
一般在主线程中使用
- 参数:
- thread:需要回收的子线程的ID
- retval: 接收子线程退出时的返回值
- 返回值:
0 : 成功
非0 : 失败,返回的错误号
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

int value = 10;

void * callback(void * arg) {
printf("child thread id : %ld\n", pthread_self());
// sleep(3);
// return NULL;
// int value = 10; // 局部变量
pthread_exit((void *)&value); // return (void *)&value;
}

int main() {

// 创建一个子线程
pthread_t tid;
int ret = pthread_create(&tid, NULL, callback, NULL);

if(ret != 0) {
char * errstr = strerror(ret);
printf("error : %s\n", errstr);
}

// 主线程
for(int i = 0; i < 5; i++) {
printf("%d\n", i);
}

printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

// 主线程调用pthread_join()回收子线程的资源
int * thread_retval;
ret = pthread_join(tid, (void **)&thread_retval);

if(ret != 0) {
char * errstr = strerror(ret);
printf("error : %s\n", errstr);
}

printf("exit data : %d\n", *thread_retval);

printf("回收子线程资源成功!\n");

// 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
pthread_exit(NULL);

return 0;
}

1.8 线程的分离

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/*
#include <pthread.h>
int pthread_detach(pthread_t thread);
- 功能:分离一个线程。被分离的线程在终止的时候,会自动释放资源返回给系统。
1.不能多次分离,会产生不可预料的行为。
2.不能去连接一个已经分离的线程,会报错。
- 参数:需要分离的线程的ID
- 返回值:
成功:0
失败:返回错误号
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
printf("chid thread id : %ld\n", pthread_self());
return NULL;
}

int main() {

// 创建一个子线程
pthread_t tid;

int ret = pthread_create(&tid, NULL, callback, NULL);
if(ret != 0) {
char * errstr = strerror(ret);
printf("error1 : %s\n", errstr);
}

// 输出主线程和子线程的id
printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

// 设置子线程分离,子线程分离后,子线程结束时对应的资源就不需要主线程释放
ret = pthread_detach(tid);
if(ret != 0) {
char * errstr = strerror(ret);
printf("error2 : %s\n", errstr);
}

// 设置分离后,对分离的子线程进行连接 pthread_join()
// ret = pthread_join(tid, NULL);
// if(ret != 0) {
// char * errstr = strerror(ret);
// printf("error3 : %s\n", errstr);
// }

pthread_exit(NULL);

return 0;
}

1.9 线程取消

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
/*
#include <pthread.h>
int pthread_cancel(pthread_t thread);
- 功能:取消线程(让线程终止)
取消某个线程,可以终止某个线程的运行,
但是并不是立马终止,而是当子线程执行到一个取消点,线程才会终止。
取消点:系统规定好的一些系统调用,我们可以粗略的理解为从用户区到内核区的切换,这个位置称之为取消点。
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
printf("chid thread id : %ld\n", pthread_self());
for(int i = 0; i < 5; i++) {
printf("child : %d\n", i);
}
return NULL;
}

int main() {

// 创建一个子线程
pthread_t tid;

int ret = pthread_create(&tid, NULL, callback, NULL);
if(ret != 0) {
char * errstr = strerror(ret);
printf("error1 : %s\n", errstr);
}

// 取消线程
pthread_cancel(tid);

for(int i = 0; i < 5; i++) {
printf("%d\n", i);
}

// 输出主线程和子线程的id
printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());


pthread_exit(NULL);

return 0;
}

1.10 线程属性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/*
int pthread_attr_init(pthread_attr_t *attr);
- 初始化线程属性变量

int pthread_attr_destroy(pthread_attr_t *attr);
- 释放线程属性的资源

int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
- 获取线程分离的状态属性

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
- 设置线程分离的状态属性
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
printf("chid thread id : %ld\n", pthread_self());
return NULL;
}

int main() {

// 创建一个线程属性变量
pthread_attr_t attr;
// 初始化属性变量
pthread_attr_init(&attr);

// 设置属性
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

// 创建一个子线程
pthread_t tid;

int ret = pthread_create(&tid, &attr, callback, NULL);
if(ret != 0) {
char * errstr = strerror(ret);
printf("error1 : %s\n", errstr);
}

// 获取线程的栈的大小
// 一般系统默认为每个线程分配8MB的栈空间,即 8 MB = 8388608 B
size_t size;
pthread_attr_getstacksize(&attr, &size);
printf("thread stack size : %ld\n", size);

// 输出主线程和子线程的id
printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

// 释放线程属性资源
pthread_attr_destroy(&attr);

pthread_exit(NULL);

return 0;
}

2 线程同步

线程的主要优势在于,能够通过全局变量来共享信息。不过,这种便捷的共享是有代价的:必须确保多个线程不会同时修改同一变量,或者某一线程不会读取正在由其他线程修改的变量。

临界区是指访问某一共享资源的代码片段,并且这段代码的执行应为原子操作,也就是 时访问同一共享资源的其他线程不应终端该片段的执行。

线程同步:即当有一个线程在对内存进行操作时,其他线程都不可以对这个内存地址进行操作,直到该线程完成操作,其他线程才能对该内存地址进行操作,而其他线程则处于等待状态。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
/*
使用多线程实现买票的案例。
有3个窗口,一共是100张票。
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 100;

void * sellticket(void * arg) {
// 卖票
while(tickets > 0) {
usleep(6000);
printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
tickets--;
}
return NULL;
}

int main() {

// 创建3个子线程
pthread_t tid1, tid2, tid3;
pthread_create(&tid1, NULL, sellticket, NULL);
pthread_create(&tid2, NULL, sellticket, NULL);
pthread_create(&tid3, NULL, sellticket, NULL);

// 回收子线程的资源,阻塞
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
pthread_join(tid3, NULL);

// 设置线程分离。
// pthread_detach(tid1);
// pthread_detach(tid2);
// pthread_detach(tid3);

pthread_exit(NULL); // 退出主线程

return 0;
}

2.1 互斥锁

为避免线程更新共享变量时出现问题,可以使用互斥量(mutex 是 mutual exclusion 的缩写)来确保同时仅有一个线程可以访问某项共享资源。可以使用互斥量来保证对任意共 享资源的原子访问。

互斥量有两种状态:已锁定(locked)和未锁定(unlocked)。任何时候,至多只有一 个线程可以锁定该互斥量。试图对已经锁定的某一互斥量再次加锁,将可能阻塞线程或者报 错失败,具体取决于加锁时使用的方法。

一旦线程锁定互斥量,随即成为该互斥量的所有者,只有所有者才能给互斥量解锁。一般情 况下,对每一共享资源(可能由多个相关变量组成)会使用不同的互斥量,每一线程在访问 同一资源时将采用如下协议: 针对共享资源锁定互斥量 ;访问共享资源 ;对互斥量解锁。

如果多个线程试图执行这一块代码(一个临界区),事实上只有一个线程能够持有该互斥 量(其他线程将遭到阻塞),即同时只有一个线程能够进入这段代码区域,如下图所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
互斥量的类型 pthread_mutex_t
int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
- 初始化互斥量
- 参数 :
- mutex : 需要初始化的互斥量变量
- attr : 互斥量相关的属性,NULL
- restrict : C语言的修饰符,被修饰的指针,不能由另外的一个指针进行操作。
pthread_mutex_t *restrict mutex = xxx;
pthread_mutex_t * mutex1 = mutex;

int pthread_mutex_destroy(pthread_mutex_t *mutex);
- 释放互斥量的资源

int pthread_mutex_lock(pthread_mutex_t *mutex);
- 加锁,阻塞的,如果有一个线程加锁了,那么其他的线程只能阻塞等待

int pthread_mutex_trylock(pthread_mutex_t *mutex);
- 尝试加锁,如果加锁失败,不会阻塞,会直接返回。

int pthread_mutex_unlock(pthread_mutex_t *mutex);
- 解锁
*/
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;

// 创建一个互斥量
pthread_mutex_t mutex;

void * sellticket(void * arg) {

// 卖票
while(1) {

// 加锁
pthread_mutex_lock(&mutex);

if(tickets > 0) {
usleep(6000);
printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
tickets--;
}else {
// 解锁
pthread_mutex_unlock(&mutex);
break;
}

// 解锁
pthread_mutex_unlock(&mutex);
}



return NULL;
}

int main() {

// 初始化互斥量
pthread_mutex_init(&mutex, NULL);

// 创建3个子线程
pthread_t tid1, tid2, tid3;
pthread_create(&tid1, NULL, sellticket, NULL);
pthread_create(&tid2, NULL, sellticket, NULL);
pthread_create(&tid3, NULL, sellticket, NULL);

// 回收子线程的资源,阻塞
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
pthread_join(tid3, NULL);

pthread_exit(NULL); // 退出主线程

// 释放互斥量资源
pthread_mutex_destroy(&mutex);

return 0;
}

2.2 死锁

有时,一个线程需要同时访问两个或更多不同的共享资源,而每个资源又都由不同的互 斥量管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。两个或两个以上的进程在执行过程中,因争夺共享资源而造成的一种互相等待的现象, 若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁。

死锁的几种场景: 忘记释放锁; 重复加锁; 多线程多锁,抢占锁资源。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建2个互斥量
pthread_mutex_t mutex1, mutex2;

void * workA(void * arg) {

pthread_mutex_lock(&mutex1);
sleep(1);
pthread_mutex_lock(&mutex2);

printf("workA....\n");

pthread_mutex_unlock(&mutex2);
pthread_mutex_unlock(&mutex1);
return NULL;
}


void * workB(void * arg) {
pthread_mutex_lock(&mutex2);
sleep(1);
pthread_mutex_lock(&mutex1);

printf("workB....\n");

pthread_mutex_unlock(&mutex1);
pthread_mutex_unlock(&mutex2);

return NULL;
}

int main() {

// 初始化互斥量
pthread_mutex_init(&mutex1, NULL);
pthread_mutex_init(&mutex2, NULL);

// 创建2个子线程
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, workA, NULL);
pthread_create(&tid2, NULL, workB, NULL);

// 回收子线程资源
pthread_join(tid1, NULL);
pthread_join(tid2, NULL);

// 释放互斥量资源
pthread_mutex_destroy(&mutex1);
pthread_mutex_destroy(&mutex2);

return 0;
}

2.3 读写锁

当有一个线程已经持有互斥锁时,互斥锁将所有试图进入临界区的线程都阻塞住。但是考 虑一种情形,当前持有互斥锁的线程只是要读访问共享资源,而同时有其它几个线程也想 读取这个共享资源,但是由于互斥锁的排它性,所有其它线程都无法获取锁,也就无法读 访问共享资源了,但是实际上多个线程同时读访问共享资源并不会导致问题。

在对数据的读写操作中,更多的是读操作,写操作较少,例如对数据库数据的读写应用。 为了满足当前能够允许多个读出,但只允许一个写入的需求,线程提供了读写锁来实现。

读写锁的特点:如果有其它线程读数据,则允许其它线程执行读操作,但不允许写操作。如果有其它线程写数据,则其它线程都不允许读、写操作。写是独占的,写的优先级高。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*
读写锁的类型 pthread_rwlock_t
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

案例:8个线程操作同一个全局变量。
3个线程不定时写这个全局变量,5个线程不定时的读这个全局变量
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 创建一个共享数据
int num = 1;
// pthread_mutex_t mutex;
pthread_rwlock_t rwlock;

void * writeNum(void * arg) {

while(1) {
pthread_rwlock_wrlock(&rwlock);
num++;
printf("++write, tid : %ld, num : %d\n", pthread_self(), num);
pthread_rwlock_unlock(&rwlock);
usleep(100);
}

return NULL;
}

void * readNum(void * arg) {

while(1) {
pthread_rwlock_rdlock(&rwlock);
printf("===read, tid : %ld, num : %d\n", pthread_self(), num);
pthread_rwlock_unlock(&rwlock);
usleep(100);
}

return NULL;
}

int main() {

pthread_rwlock_init(&rwlock, NULL);

// 创建3个写线程,5个读线程
pthread_t wtids[3], rtids[5];
for(int i = 0; i < 3; i++) {
pthread_create(&wtids[i], NULL, writeNum, NULL);
}

for(int i = 0; i < 5; i++) {
pthread_create(&rtids[i], NULL, readNum, NULL);
}

// 设置线程分离
for(int i = 0; i < 3; i++) {
pthread_detach(wtids[i]);
}

for(int i = 0; i < 5; i++) {
pthread_detach(rtids[i]);
}

pthread_exit(NULL);

pthread_rwlock_destroy(&rwlock);

return 0;
}

2.4 生产者和消费者模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
/*
生产者消费者模型(粗略的版本)
*/
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

// 创建一个互斥量
pthread_mutex_t mutex;

struct Node{
int num;
struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

// 不断的创建新的节点,添加到链表中
while(1) {
pthread_mutex_lock(&mutex);
struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
newNode->next = head;
head = newNode;
newNode->num = rand() % 1000;
printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
pthread_mutex_unlock(&mutex);
usleep(100);
}

return NULL;
}

void * customer(void * arg) {

while(1) {
pthread_mutex_lock(&mutex);
// 保存头结点的指针
struct Node * tmp = head;

// 判断是否有数据
if(head != NULL) {
// 有数据
head = head->next;
printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
free(tmp);
pthread_mutex_unlock(&mutex);
usleep(100);
} else {
// 没有数据
pthread_mutex_unlock(&mutex);
}
}
return NULL;
}

int main() {

pthread_mutex_init(&mutex, NULL);

// 创建5个生产者线程,和5个消费者线程
pthread_t ptids[5], ctids[5];

for(int i = 0; i < 5; i++) {
pthread_create(&ptids[i], NULL, producer, NULL);
pthread_create(&ctids[i], NULL, customer, NULL);
}

for(int i = 0; i < 5; i++) {
pthread_detach(ptids[i]);
pthread_detach(ctids[i]);
}

while(1) {
sleep(10);
}

pthread_mutex_destroy(&mutex);

pthread_exit(NULL);

return 0;
}

2.5 条件变量

跟互斥锁一起使用,容量为空的时候,则阻塞,一直等待生产者生产之后才继续。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/*
条件变量的类型 pthread_cond_t
int pthread_cond_init(pthread_cond_t *restrict cond, const pthread_condattr_t *restrict attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex);
- 等待,调用了该函数,线程会阻塞。
int pthread_cond_timedwait(pthread_cond_t *restrict cond, pthread_mutex_t *restrict mutex, const struct timespec *restrict abstime);
- 等待多长时间,调用了这个函数,线程会阻塞,直到指定的时间结束。
int pthread_cond_signal(pthread_cond_t *cond);
- 唤醒一个或者多个等待的线程
int pthread_cond_broadcast(pthread_cond_t *cond);
- 唤醒所有的等待的线程
*/
#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

// 创建一个互斥量
pthread_mutex_t mutex;
// 创建条件变量
pthread_cond_t cond;

struct Node{
int num;
struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

// 不断的创建新的节点,添加到链表中
while(1) {
pthread_mutex_lock(&mutex);
struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
newNode->next = head;
head = newNode;
newNode->num = rand() % 1000;
printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());

// 只要生产了一个,就通知消费者消费
pthread_cond_signal(&cond);

pthread_mutex_unlock(&mutex);
usleep(100);
}

return NULL;
}

void * customer(void * arg) {

while(1) {
pthread_mutex_lock(&mutex);
// 保存头结点的指针
struct Node * tmp = head;
// 判断是否有数据
if(head != NULL) {
// 有数据
head = head->next;
printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
free(tmp);
pthread_mutex_unlock(&mutex);
usleep(100);
} else {
// 没有数据,需要等待
// 当这个函数调用阻塞的时候,会对互斥锁进行解锁,当不阻塞的,继续向下执行,会重新加锁。
pthread_cond_wait(&cond, &mutex);
pthread_mutex_unlock(&mutex);
}
}
return NULL;
}

int main() {

pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);

// 创建5个生产者线程,和5个消费者线程
pthread_t ptids[5], ctids[5];

for(int i = 0; i < 5; i++) {
pthread_create(&ptids[i], NULL, producer, NULL);
pthread_create(&ctids[i], NULL, customer, NULL);
}

for(int i = 0; i < 5; i++) {
pthread_detach(ptids[i]);
pthread_detach(ctids[i]);
}

while(1) {
sleep(10);
}

pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);

pthread_exit(NULL);

return 0;
}

2.6 信号量/信号灯

和互斥锁一起使用。互斥锁保证原子性,即一次只能有一个线程。信号量保证范围,即最多生产多少个,消费多少个。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*
信号量的类型 sem_t
int sem_init(sem_t *sem, int pshared, unsigned int value);
- 初始化信号量
- 参数:
- sem : 信号量变量的地址
- pshared : 0 用在线程间 ,非0 用在进程间
- value : 信号量中的值

int sem_destroy(sem_t *sem);
- 释放资源

int sem_wait(sem_t *sem);
- 对信号量加锁,调用一次对信号量的值-1,如果值为0,就阻塞

int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
int sem_post(sem_t *sem);
- 对信号量解锁,调用一次对信号量的值+1

int sem_getvalue(sem_t *sem, int *sval);

sem_t psem;
sem_t csem;
init(psem, 0, 8);
init(csem, 0, 0);

producer() {
sem_wait(&psem);
sem_post(&csem)
}

customer() {
sem_wait(&csem);
sem_post(&psem)
}

*/

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>

// 创建一个互斥量
pthread_mutex_t mutex;
// 创建两个信号量
sem_t psem;
sem_t csem;

struct Node{
int num;
struct Node *next;
};

// 头结点
struct Node * head = NULL;

void * producer(void * arg) {

// 不断的创建新的节点,添加到链表中
while(1) {
sem_wait(&psem);
pthread_mutex_lock(&mutex);
struct Node * newNode = (struct Node *)malloc(sizeof(struct Node));
newNode->next = head;
head = newNode;
newNode->num = rand() % 1000;
printf("add node, num : %d, tid : %ld\n", newNode->num, pthread_self());
pthread_mutex_unlock(&mutex);
sem_post(&csem);
}

return NULL;
}

void * customer(void * arg) {

while(1) {
sem_wait(&csem);
pthread_mutex_lock(&mutex);
// 保存头结点的指针
struct Node * tmp = head;
head = head->next;
printf("del node, num : %d, tid : %ld\n", tmp->num, pthread_self());
free(tmp);
pthread_mutex_unlock(&mutex);
sem_post(&psem);

}
return NULL;
}

int main() {

pthread_mutex_init(&mutex, NULL);
sem_init(&psem, 0, 8);
sem_init(&csem, 0, 0);

// 创建5个生产者线程,和5个消费者线程
pthread_t ptids[5], ctids[5];

for(int i = 0; i < 5; i++) {
pthread_create(&ptids[i], NULL, producer, NULL);
pthread_create(&ctids[i], NULL, customer, NULL);
}

for(int i = 0; i < 5; i++) {
pthread_detach(ptids[i]);
pthread_detach(ctids[i]);
}

while(1) {
sleep(10);
}

pthread_mutex_destroy(&mutex);

pthread_exit(NULL);

return 0;
}